If you’re a regular reader of my blog you’ll know that I’ve spent some time dabbling with neural networks. As I explained here, I’ve used neural networks in my own research to develop inference into causation. Neural networks fall under two general categories that describe their intended use. Supervised neural networks (e.g., multilayer feed-forward networks) are generally used for prediction, whereas unsupervised networks (e.g., Kohonen self-organizing maps) are used for pattern recognition. This categorization partially describes the role of the analyst during model development. For example, a supervised network is developed from a set of known variables and the end goal of the model is to match the predicted output values with the observed via ‘supervision’ of the training process by the analyst. Development of unsupervised networks are conducted independently from the analyst in the sense that the end product is not known and no direct supervision is required to ensure expected or known results are obtained. Although my research objectives were not concerned specifically with prediction, I’ve focused entirely on supervised networks given the number of tools that have been developed to gain insight into causation. Most of these tools have been described in the primary literature but are not available in R.

My previous post on neural networks described a plotting function that can be used to visually interpret a neural network. Variables in the layers are labelled, in addition to coloring and thickening of weights between the layers. A general goal of statistical modelling is to identify the relative importance of explanatory variables for their relation to one or more response variables. The plotting function is used to portray the neural network in this manner, or more specifically, it plots the neural network as a neural interpretation diagram (NID)^{1}. The rationale for use of an NID is to provide insight into variable importance by visually examining the weights between the layers. For example, input (explanatory) variables that have strong positive associations with response variables are expected to have many thick black connections between the layers. This qualitative interpretation can be very challenging for large models, particularly if the sign of the weights switches after passing the hidden layer. I have found the NID to be quite useless for anything but the simplest models.

The weights that connect variables in a neural network are partially analogous to parameter coefficients in a standard regression model and can be used to describe relationships between variables. That is, the weights dictate the relative influence of information that is processed in the network such that input variables that are not relevant in their correlation with a response variable are suppressed by the weights. The opposite effect is seen for weights assigned to explanatory variables that have strong, positive associations with a response variable. An obvious difference between a neural network and a regression model is that the number of weights is excessive in the former case. This characteristic is advantageous in that it makes neural networks very flexible for modeling non-linear functions with multiple interactions, although interpretation of the effects of specific variables is of course challenging.

A method proposed by Garson 1991^{2} (also Goh 1995^{3}) identifies the relative importance of explanatory variables for specific response variables in a supervised neural network by deconstructing the model weights. The basic idea is that the relative importance (or strength of association) of a specific explanatory variable for a specific response variable can be determined by identifying all weighted connections between the nodes of interest. That is, all weights connecting the specific input node that pass through the hidden layer to the specific response variable are identified. This is repeated for all other explanatory variables until the analyst has a list of all weights that are specific to each input variable. The connections are tallied for each input node and scaled relative to all other inputs. A single value is obtained for each explanatory variable that describes the relationship with response variable in the model (see the appendix in Goh 1995 for a more detailed description). The original algorithm presented in Garson 1991 indicated relative importance as the absolute magnitude from zero to one such the direction of the response could not be determined. I modified the approach to preserve the sign, as you’ll see below.

We start by creating a neural network model (using the `nnet`

package) from simulated data before illustrating use of the algorithm. The model is created from eight input variables, one response variable, 10000 observations, and an arbitrary correlation matrix that describes relationships between the explanatory variables. A set of randomly chosen parameters describe the relationship of the response variable with the explanatory variables.

require(clusterGeneration) require(nnet) #define number of variables and observations set.seed(2) num.vars<-8 num.obs<-10000 #define correlation matrix for explanatory variables #define actual parameter values cov.mat<-genPositiveDefMat(num.vars,covMethod=c("unifcorrmat"))$Sigma rand.vars<-mvrnorm(num.obs,rep(0,num.vars),Sigma=cov.mat) parms<-runif(num.vars,-10,10) y<-rand.vars %*% matrix(parms) + rnorm(num.obs,sd=20) #prep data and create neural network y<-data.frame((y-min(y))/(max(y)-min(y))) names(y)<-'y' rand.vars<-data.frame(rand.vars) mod1<-nnet(rand.vars,y,size=8,linout=T)

The function for determining relative importance is called `gar.fun`

and can be imported from my Github account (gist 6206737). The function reverse depends on the `plot.nnet`

function to get the model weights.

#import 'gar.fun' from Github source_url('https://gist.githubusercontent.com/fawda123/6206737/raw/d6f365c283a8cae23fb20892dc223bc5764d50c7/gar_fun.r')

The function is very simple to implement and has the following arguments:

`out.var` |
character string indicating name of response variable in the neural network object to be evaluated, only one input is allowed for models with multivariate response |

`mod.in` |
model object for input created from `nnet` function |

`bar.plot` |
logical value indicating if a figure is also created in the output, default T |

`x.names` |
character string indicating alternative names to be used for explanatory variables in the figure, default is taken from `mod.in` |

`...` |
additional arguments passed to the bar plot function |

The function returns a list with three elements, the most important of which is the last element named `rel.imp`

. This element indicates the relative importance of each input variable for the named response variable as a value from -1 to 1. From these data, we can get an idea of what the neural network is telling us about the specific importance of each explanatory for the response variable. Here’s the function in action:

#create a pretty color vector for the bar plot cols<-colorRampPalette(c('lightgreen','lightblue'))(num.vars) #use the function on the model created above par(mar=c(3,4,1,1),family='serif') gar.fun('y',mod1,col=cols,ylab='Rel. importance',ylim=c(-1,1)) #output of the third element looks like this # $rel.imp # X1 X2 X3 X4 X5 # 0.0000000 0.9299522 0.6114887 -0.9699019 -1.0000000 # X6 X7 X8 # -0.8217887 0.3600374 0.4018899

The output from the function and the bar plot tells us that the variables `X5`

and `X2`

have the strongest negative and positive relationships, respectively, with the response variable. Similarly, variables that have relative importance close to zero, such as `X1`

, do not have any substantial importance for `y`

. Note that these values indicate relative importance such that a variable with a value of zero will most likely have some marginal effect on the response variable, but its effect is irrelevant in the context of the other explanatory variables.

An obvious question of concern is whether these indications of relative importance provide similar information as the true relationships between the variables we’ve defined above. Specifically, we created the response variable `y`

as a linear function of the explanatory variables based on a set of randomly chosen parameters (`parms`

). A graphical comparison of the indications of relative importance with the true parameter values is as follows:

We assume that concordance between the true parameter values and the indications of relative importance is indicated by similarity between the two, which is exactly what is seen above. We can say with certainty that the neural network model and the function to determine relative importance is providing us with reliable information. A logical question to ask next is whether or not using a neural network provides more insight into variable relationships than a standard regression model, since we know our response variable follows the general form of a linear regression. An interesting exercise could compare this information for a response variable that is more complex than the one we’ve created above, e.g., add quadratic terms, interactions, etc.

As far as I know, Garson’s algorithm has never been modified to preserve the sign of the relationship between variables. This information is clearly more useful than simply examining the magnitude of the relationship, as is the case with the original algorithm. I hope the modified algorithm will be useful for facilitating the use of neural networks to infer causation, although it must be acknowledged that a neural network is ultimately based on correlation and methods that are more heavily based in theory could be more appropriate. Lastly, I consider this blog my contribution to dispelling the myth that neural networks are black boxes (motivated by Olden and Jackson 2002^{4}). Useful information can indeed be obtained with the right tools.

-Marcus

^{1}Özesmi, S.L., Özesmi, U. 1999. An artificial neural network approach to spatial habitat modeling with interspecific interaction. Ecological Modelling. 116:15-31.

^{2}Garson, G.D. 1991. Interpreting neural network connection weights. Artificial Intelligence Expert. 6(4):46–51.

^{3}Goh, A.T.C. 1995. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering. 9(3):143–151.

^{4}Olden, J.D., Jackson, D.A. 2002. Illuminating the ‘black-box': a randomization approach for understanding variable contributions in artificial neural networks. Ecological Modelling. 154:135-150.

Update:

I’m currently updating all of the neural network functions on my blog to make them compatible with all neural network packages in R. Additionally, the functions will be able to use raw weight vectors as inputs, in addition to model objects as currently implemented. The updates to the `gar.fun`

function include these options. See the examples below for more details. I’ve also changed the plotting to use `ggplot2`

graphics.

The new arguments for `gar.fun`

are as follows:

`out.var` |
character string indicating name of response variable in the neural network object to be evaluated, only one input is allowed for models with multivariate response, must be of form ‘Y1′, ‘Y2′, etc. if using numeric values as weight inputs for `mod.in` |

`mod.in` |
model object for neural network created using the nnet, RSNNS, or neuralnet packages, alternatively, a numeric vector specifying model weights in specific order, see example |

`bar.plot` |
logical value indicating if a figure or relative importance values are returned, default T |

`struct` |
numeric vector of length three indicating structure of the neural network, e.g., 2, 2, 1 for two inputs, two hidden, and one response, only required if `mod.in` is a vector input |

`x.lab` |
character string indicating alternative names to be used for explanatory variables in the figure, default is taken from `mod.in` |

`y.lab` |
character string indicating alternative names to be used for response variable in the figure, default is taken from `out.var` |

`wts.only` |
logical indicating of only model weights should be returned |

# this example shows use of raw input vector as input # the weights are taken from the nnet model above # import new function source_url('https://gist.githubusercontent.com/fawda123/6206737/raw/d6f365c283a8cae23fb20892dc223bc5764d50c7/gar_fun.r') # get vector of weights from mod1 vals.only <- unlist(gar.fun('y', mod1, wts.only = T)) vals.only # hidden 1 11 hidden 1 12 hidden 1 13 hidden 1 14 hidden 1 15 hidden 1 16 hidden 1 17 # -1.5440440353 0.4894971240 -0.7846655620 -0.4554819870 2.3803629827 0.4045390778 1.1631255990 # hidden 1 18 hidden 1 19 hidden 1 21 hidden 1 22 hidden 1 23 hidden 1 24 hidden 1 25 # 1.5844070803 -0.4221806079 0.0480375217 -0.3983876761 -0.6046451652 -0.0736146356 0.2176405974 # hidden 1 26 hidden 1 27 hidden 1 28 hidden 1 29 hidden 1 31 hidden 1 32 hidden 1 33 # -0.0906340785 0.1633912108 -0.1206766987 -0.6528977864 1.2255953817 -0.7707485396 -1.0063172490 # hidden 1 34 hidden 1 35 hidden 1 36 hidden 1 37 hidden 1 38 hidden 1 39 hidden 1 41 # 0.0371724519 0.2494350900 0.0220121908 -1.3147089165 0.5753711352 0.0482957709 -0.3368124708 # hidden 1 42 hidden 1 43 hidden 1 44 hidden 1 45 hidden 1 46 hidden 1 47 hidden 1 48 # 0.1253738473 0.0187610286 -0.0612728942 0.0300645103 0.1263138065 0.1542115281 -0.0350399176 # hidden 1 49 hidden 1 51 hidden 1 52 hidden 1 53 hidden 1 54 hidden 1 55 hidden 1 56 # 0.1966119466 -2.7614366991 -0.9671345937 -0.1508876798 -0.2839796515 -0.8379801306 1.0411094014 # hidden 1 57 hidden 1 58 hidden 1 59 hidden 1 61 hidden 1 62 hidden 1 63 hidden 1 64 # 0.7940494280 -2.6602412144 0.7581558506 -0.2997650961 0.4076177409 0.7755417212 -0.2934247464 # hidden 1 65 hidden 1 66 hidden 1 67 hidden 1 68 hidden 1 69 hidden 1 71 hidden 1 72 # 0.0424664179 0.5997626459 -0.3753986118 -0.0021020946 0.2722725781 -0.2353500011 0.0876374693 # hidden 1 73 hidden 1 74 hidden 1 75 hidden 1 76 hidden 1 77 hidden 1 78 hidden 1 79 # -0.0244290095 -0.0026191346 0.0080349427 0.0449513273 0.1577298156 -0.0153099721 0.1960918520 # hidden 1 81 hidden 1 82 hidden 1 83 hidden 1 84 hidden 1 85 hidden 1 86 hidden 1 87 # -0.6892926134 -1.7825068475 1.6225034225 -0.4844547498 0.8954479895 1.1236485983 2.1201674117 # hidden 1 88 hidden 1 89 out 11 out 12 out 13 out 14 out 15 # -0.4196627413 0.4196025359 1.1000994866 -0.0009401206 -0.3623747323 0.0011638613 0.9642290448 # out 16 out 17 out 18 out 19 # 0.0005194378 -0.2682687768 -1.6300590889 0.0021911807 # use the function and modify ggplot object p1 <- gar.fun('Y1',vals.only, struct = c(8,8,1)) p1 p2 <- p1 + theme_bw() + theme(legend.position = 'none') p2

The user has the responsibility to make sure the weight vector is in the correct order if raw weights are used as input. The function will work if all weights are provided but there is no method for identifying the correct order. The names of the weights in the commented code above describe the correct order, e.g., Hidden 1 11 is the bias layer weight going to hidden node 1, Hidden 1 12 is the first input going to the first hidden node, etc. The first number is an arbitrary place holder indicating the first hidden layer. The correct structure must also be provided for the given length of the input weight vector. `NA`

values should be used if no bias layers are included in the model. Stay tuned for more updates as I continue revising these functions.

Thank you for the post. It is good to find a novel application of neural networks.

Thanks! I plan on having another post or two about additional nnet tools I’ve made. I might even submit them as a package if sufficiently motivated.

Okay, I have to say this, but understand completely that its not the authors fault. AI/Machine Learning/various code type guys have been using the term ‘neural networks’ for years, without anyone pointing out that this a science fiction term ( probably Philip.K.Dick) adopted by philosophers for gedankenexperiment (thought experiments) and used as an ambition for AI. But the Ai versions were never neural networks, because 1. No one has ever figured out how neurons network, and 2. if there are such things, they involve both analog and digital information transmissions .

I bet your ‘neural network’ is devoid of analog. Anyway, philosophy doesn’t own the phrase any more, but its important (I think) to know that even if you are creating AI, you are not mimicking neuronal activity. There, I’ve said it, in a comment that no one will read….

I agree with you completely. I’m not a fan of the term since it’s a gross over-simplification of what it’s meant to represent, as you’ve described. Whenever I present this material I make sure to point out the inappropriate use of the term. I do think that the terminology has, in part, contributed to their overuse and an exaggeration of abilities. All things considered, you have to admit they are a rather clever approach to modelling.

Well, thank you for proving me wrong by both reading, and responding. I do agree that its a very useful approach to modelling, I also agree that this is a valuable contribution to demystifying the approach (a mystery which is probably exaggerated by the use of the term ‘neural’, and thus aggravated by complexity theorists who believe that the right answers ’emerge’ from the process)

Hi. Your graph is great! Is it possible to edit a version for the original garson paper, so without ignoring the signs?

Hi there, I’m not sure what you mean since the current version includes sign of the response. My original code for the function determined relative importance exactly as described in the Garson paper, i.e., only the magnitude of relative importance was included. It’s very easy to modify the source code in my function to only return magnitude. I can update if you’d like.

Hi … Really appreciate the blog posts for giving insights about NN. I am trying to implement this code for variable importance. However, source_gist(‘5086859′) , in the code gives me a connection error. I went to the site where the code is supposed to be stored. But I am not able to access it. Is there a way I can aacess it?? Thanks in anticipation. Also thanks a lot for your blogs

Hi, sorry you couldn’t access the code. I was having trouble with the source function on my last blog post for some reason. You can access the raw code for variable importance here:

Visualizing neural networks in R – update – R is my friend

to me, garson’s algorithm itself seems incorrect. Even though it seems to use the weights from hidden node to the output node, it actually gets cancelled out when it computes the contribution of one input node. for a single input to hidden node contribution calculation, the denominator and numerator both contain the same factor of hidden_to_output node weight value.

I assume the Garson algo described in ref#4 (Olden and Jackson) is correct.

R(a1) = C(a1)/ [C(a1) + C(a2) + C(a3)] and all C(ai) have the common factor W(oa). So R(a1) is independent of W(oa).

Effectively, each input’s importance is independent of the weights from hidden layer to the output.

Is that correct, or am I missing something.

Been a while since I’ve thought about this algorithm… it’s a tricky one. If I’m understanding you correctly, the issue you point out is that the algorithm incorrectly interprets importance in cases where the weights are of opposite sign from input to hidden and hidden to output — the weights cancel out. To me, this isn’t a problem since the weights are determined as a means to minimize prediction error. The weights describe the relationships between input/output that are mediated by the hidden layer. Both sets of weights (I-H, H-O) need to be evaluated to interpret the complex links between input to hidden. I think my figure above provides a useful comparison of relative importance using an independent measure — actual parameter values compared to Garson’s estimates. The two correspond well suggesting the latter is a valid estimate. Please explain if I’ve misinterpreted….

Thanks for looking!

No, it’s not about the sign of the weights. I-H is fine. My concern is about H-O getting cancelled since both numerator C(a1) = W(a1) * W(ao) and denominator [C(a1) + C(a2) + C(a3)] = [W(a1)*W(ao) + W(a3)*W(ao) + W(a3)*W(ao)] have W(ao) common and subsequently, R(a1) = W(a1)/[W(a1) + W(a3) + W(a3)] is independent of weight W(ao) from H-O layer.

Garson uses the abs value |W(a1)*W(ao)| ignoring the sign (so that -ve and +ve correlations are not differentiated) but the factor I mention still cancels out.

Hope this explains my dilemma.

Hi! I’ve been working on an R package with similar goals that you might be interested in. It’s based on an idea Andrew Gelman and Iain Pardoe published in 2007. I’ve put up some examples and things here: http://www.davidchudzicki.com/predcomps/.

The main thing that distinguishes this from other approaches is that it accounts for the distribution of model inputs in a way that other approaches usually don’t.

Another nice feature is that it applies the same way across models (rather than being specifically for neural networks), so it can be helpful in comparing different types of models.

Hi David, I’ll have a look at your package. It seems that these types of tools will be more relevant as we continue to use models with arbitrary structures. I haven’t tested it extensively, but my post on sensitivity analyses describes a function that should work with any model that has a predict method.

Thanks. I enjoyed the sensitivity analysis post. I think there’s a problem with the default settings (setting the variables that aren’t varying to their quantiles):

For example, if we’re doing a sensitivity analysis on x3 when x1 and x2 are negatively correlated with mean zero (so that their product is usually negative), and y = x1 x2 x3, then in real life, y will usually be *decreasing* in x3, but the sensitivity analysis that sets x1 and x2 to their quantiles (independently) will show y *increasing* in x3.

This is one example of what I mean when I say that most approaches to variable importance & sensitivity analysis don’t account for the relationships among the input variables.

Yea I think I get what you’re saying. The sensitivity analysis doesn’t account for covariance among explanatory variables so you could get a misleading result by holding them independently at their quantiles. I made a variant of the sensitivity analysis that grouped explanatory variables into clusters and held them constant at their means. This was my attempt at accounting for covariance since the mean values were based on natural groupings among the variables. This still doesn’t account for variation across the range of values, i.e., x2 is decreasing while x3 increases… not sure how to deal with that.

First of all, congratulations.

Just one update, the function call that worked for me is:

gar.fun(‘Y’,mod1)

I do believe that the function was updated after this post.

And another detail: if I change the num.vars to a value above 8 (say 10 for example) the plot order gets messed up.

Roberto, thanks for pointing that out. I fixed the function and the order should be correct now.

Medir la importancia de las variables en una red neuronal con R » Análisis y decisión

NeuralNetTools 1.0.0 now on CRAN – R is my friend

Thank you for the post, is very interesting. Please do you have an idea of how to train a neural network with data such as image, audio,video, text etc

Hi Grace, thanks for reading. I only have experience using neural networks for environmental/ecological applications. I do know that neural networks are commonly used in remote sensing, particularly for image classification. You may want to check out some examples from that field. I have not heard of any examples using neural networks to evaluate audio/video/text, but would be interested to hear if you find any neat examples.

Hi Thanks for this interesting work. I however have a problem in plotting the relative importance. my R program returns this error message: Error in gar.fun(“y”, mod2, col = cols, ylab = “Rel. importance”, ylim = c(-1, :

unused arguments (col = cols, ylab = “Rel. importance”, ylim = c(-1, 1)). is it that the three arguments are missing in your function or how should i go about it?

Hi and sorry you’re having issues. I suggest installing the development version of the package and try using the ‘garson’ function. This version will soon be on CRAN.

Hope that helps.

-Marcus